Advertisements
Advertisements
Question
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Solution
We have I = `int sqrt(10 - 4x + 4x^2) "d"x`
= `int sqrt((2x - 1)^2 + (3)^2) "d"x`
Put t = 2x – 1
Then dt = 2dx.
Therefore, I = `1/2 int sqrt("t"^2 + (3)^2) "dt"`
= `1/2 "t" sqrt("t"^2 + 9)/2 + 9/4 log|"t" + sqrt("t"^2 + 9)| + "C"`
= `1/4(2x - 1) sqrt((2x - 1)^2 + 9) + 9/4 log|(2x - 1) + sqrt((2x - 1)^2 + 9)| + "C"`
APPEARS IN
RELATED QUESTIONS
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is