Advertisements
Advertisements
Question
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Options
1
2
3
4
MCQ
Solution
2
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]
\[\int\limits_0^{\pi/2} x \sin x\ dx\] is equal to
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.