Advertisements
Advertisements
Question
Options
π/4
π/2
π
1
Solution
1
\[\text{We have}, \]
\[ I = \int_0^\frac{\pi}{2} x \sin x\ d x \]
\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 1\left( - \cos x \right) d x\]
\[ = \left[ - x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} \cos x\ d x\]
\[ = - \left[ x \cos x \right]_0^\frac{\pi}{2} + \left[ \sin x \right]_0^\frac{\pi}{2} \]
\[ = - \left[ 0 - 0 \right] + \left[ 1 - 0 \right]\]
\[ = 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.