Advertisements
Advertisements
Question
Options
0
π
π/2
π/4
Solution
π/2
\[\text{We have}, \]
\[I = \int_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\}dx\]
\[\text{We know since} \int f'(x) = f(x)\]
\[f(x) = si n^{- 1} \left( \frac{2x}{1 + x^2} \right) and f'(x) = \frac{d}{dx}\left\{ si n^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} \]
\[\text{Therefore}, I = \left[ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right]_0^1 \]
\[ = \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`