Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \log\left( \frac{1}{x} - 1 \right) d x ...............(1)\]
\[ = \int_0^1 \log\left( \frac{1}{1 - x} - 1 \right) d x ...............\left[\text{Using }\int_0^a f(x) dx = \int_0^a f(a - x) dx \right]\]
\[ I = \int_0^1 \log\left( \frac{x}{1 - x} \right) dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^1 \log\left( \frac{1 - x}{x} \right) + \log\left( \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log\left( \frac{1 - x}{x} \times \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log1 dx \]
\[ = 0\]
\[Hence\ I = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`