Advertisements
Advertisements
Question
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Solution
\[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} \left.\frac{x}{2}\right|_0^a = \frac{\pi}{8} ................\left[ \int\frac{1}{a^2 + x^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]
\[ \Rightarrow \frac{1}{2}\left( \tan^{- 1} \frac{a}{2} - \tan^{- 1} 0 \right) = \frac{\pi}{8}\]
\[ \Rightarrow \tan^{- 1} \frac{a}{2} - 0 = \frac{\pi}{4}\]
\[\Rightarrow \tan^{- 1} \frac{a}{2} = \frac{\pi}{4}\]
\[ \Rightarrow \frac{a}{2} = \tan\frac{\pi}{4} = 1\]
\[ \Rightarrow a = 2\]
Thus, the value of a is 2.
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Find: `int logx/(1 + log x)^2 dx`