English

If ∫ a 0 1 4 + X 2 D X = π 8 , Find the Value of A. - Mathematics

Advertisements
Advertisements

Question

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.

Sum

Solution

\[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} \left.\frac{x}{2}\right|_0^a = \frac{\pi}{8} ................\left[ \int\frac{1}{a^2 + x^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]
\[ \Rightarrow \frac{1}{2}\left( \tan^{- 1} \frac{a}{2} - \tan^{- 1} 0 \right) = \frac{\pi}{8}\]
\[ \Rightarrow \tan^{- 1} \frac{a}{2} - 0 = \frac{\pi}{4}\]

\[\Rightarrow \tan^{- 1} \frac{a}{2} = \frac{\pi}{4}\]
\[ \Rightarrow \frac{a}{2} = \tan\frac{\pi}{4} = 1\]
\[ \Rightarrow a = 2\]

Thus, the value of a is 2.

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Very Short Answers [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Very Short Answers | Q 34 | Page 116

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×