English

Π / 2 ∫ 0 1 2 Cos X + 4 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]

Sum

Solution

We have,

\[I = \int_0^\frac{\pi}{2} \frac{1}{2\cos x + 4\sin x} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 - 2 \tan^2 \frac{x}{2} + 8\tan\frac{x}{2}} d x\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[ \therefore I = 2 \int_0^1 \frac{dt}{2 - 2 t^2 + 8t}\]

\[ = - \frac{2}{2} \int_0^1 \frac{dt}{t^2 - 4 t - 1}\]

\[ = - \int_0^1 \frac{dt}{\left( t - 2 \right)^2 - 5}\]

\[ = \int_0^1 \frac{dt}{\left( \sqrt{5} \right)^2 - \left( t - 2 \right)^2}\]

\[ = \frac{1}{2\sqrt{5}} \left[ \log\left| \frac{\sqrt{5} + t - 2}{\sqrt{5} - t + 2} \right| \right]_0^1 \]

\[ = \frac{1}{2\sqrt{5}}\left[ \log\frac{\sqrt{5} - 1}{\sqrt{5} + 1} - \log\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \right] \]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \right]\]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{5 + 2\sqrt{5} - \sqrt{5} - 2}{5 - 2\sqrt{5} + \sqrt{5} - 2} \right]\]

\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} + 3}{- \sqrt{5} + 3} \right]\]

\[I = \frac{1}{2\sqrt{5}}\log \left( \frac{3 + \sqrt{5}}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} \right) \]

\[I = \frac{1}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)^2 \]

\[I = \frac{2}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right) \]

\[I = \frac{1}{\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 58 | Page 122

RELATED QUESTIONS

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

`int_0^(2a)f(x)dx`


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×