Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Solution
We have,
\[I = \int_0^\frac{\pi}{2} \frac{1}{2\cos x + 4\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 - 2 \tan^2 \frac{x}{2} + 8\tan\frac{x}{2}} d x\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = 2 \int_0^1 \frac{dt}{2 - 2 t^2 + 8t}\]
\[ = - \frac{2}{2} \int_0^1 \frac{dt}{t^2 - 4 t - 1}\]
\[ = - \int_0^1 \frac{dt}{\left( t - 2 \right)^2 - 5}\]
\[ = \int_0^1 \frac{dt}{\left( \sqrt{5} \right)^2 - \left( t - 2 \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \left[ \log\left| \frac{\sqrt{5} + t - 2}{\sqrt{5} - t + 2} \right| \right]_0^1 \]
\[ = \frac{1}{2\sqrt{5}}\left[ \log\frac{\sqrt{5} - 1}{\sqrt{5} + 1} - \log\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \right] \]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 2}{\sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{5 + 2\sqrt{5} - \sqrt{5} - 2}{5 - 2\sqrt{5} + \sqrt{5} - 2} \right]\]
\[ = \frac{1}{2\sqrt{5}}\log\left[ \frac{\sqrt{5} + 3}{- \sqrt{5} + 3} \right]\]
\[I = \frac{1}{2\sqrt{5}}\log \left( \frac{3 + \sqrt{5}}{3 - \sqrt{5}} \times \frac{3 + \sqrt{5}}{3 + \sqrt{5}} \right) \]
\[I = \frac{1}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)^2 \]
\[I = \frac{2}{2\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right) \]
\[I = \frac{1}{\sqrt{5}}log \left( \frac{3 + \sqrt{5}}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If f is an integrable function, show that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`