Advertisements
Advertisements
Question
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Solution
Let I = `int sqrt((1 + x)/(1 - x)) "d"x`
= `int 1/sqrt(1 - x^2) "d"x + int (x"d"x)/sqrt(1 - x^2)`
= `sin^-1x + 1`
When I1 = `(x"d"x)/sqrt(1 - x^2)`.
Put 1 – x2 = t2
⇒ –2x dx = 2t dt.
Therefore I1 = – dt = – t + C
= `- sqrt(1 - x^2) + "C"`
Hence I = `sin^-1x - sqrt(1 - x^2) + "C"`.
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.