Advertisements
Advertisements
Question
Solution
\[\text{Let I }= \int_0^\frac{\pi}{2} \frac{1}{1 + \tan x} dx ................(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \tan\left( \frac{\pi}{2} - x \right)} dx ...............\left[\text{Using }\int_0^a f\left( x \right) d x = \int_0^a f\left( a - x \right) d x \right]\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + cotx} d x ..............(2)\]
\[\text{Adding (1) and (2)}\]
\[ 2I = \int_0^\frac{\pi}{2} \left( \frac{1}{1 + \tan x} + \frac{1}{1 + cotx} \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + cotx + 1 + \tan x}{\left( 1 + \tan x \right)\left( 1 + cotx \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{1 + \tan x + cotx + \tan xcotx}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \tan x + cotx}{2 + \tan x + cotx}dx\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ 2I = \frac{\pi}{2}\]
\[ \therefore I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is