English

∫ 1 2 0 X Sin − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
Sum

Solution

\[\text{Let I } = \int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

Put

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\therefore dx = \cos\theta d\theta\]

When `xrarr0, thetararr0`

 

When \[x \to \frac{1}{2}, \theta \to \frac{\pi}{6}\]

\[\therefore I = \int_0^\frac{\pi}{6} \frac{\sin\theta \sin^{- 1} \left( \sin\theta \right)}{\cos\theta}\cos\theta d\theta\]

\[ = \int_0^\frac{\pi}{6} \theta\sin\theta d\theta\]

Applying integration by parts, we have

\[\left.I = \theta\left( - \cos\theta \right)\right|_0^\frac{\pi}{6} - \int_0^\frac{\pi}{6} 1 \times \left( - \cos\theta \right)d\theta\]
\[ = - \left( \frac{\pi}{6}\cos\frac{\pi}{6} - 0 \right) + \int_0^\frac{\pi}{6} \cos\theta d\theta\]
\[ = - \frac{\pi}{6} \times \frac{\sqrt{3}}{2} + \sin\theta_0^\frac{\pi}{6} \]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \sin\frac{\pi}{6} - \sin0 \right)\]
\[ = - \frac{\pi}{4\sqrt{3}} + \left( \frac{1}{2} - 0 \right)\]
\[ = \frac{1}{2} - \frac{\pi}{4\sqrt{3}}\]
shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 24 | Page 39

RELATED QUESTIONS

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×