Advertisements
Advertisements
Question
Solution
\[I = \int_0^\frac{\pi}{2} \cos^4 x \cos\ x\ d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 1 - \sin^2 x \right)^2 \cos x\ dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 1 - 2 \sin^2 x + \sin^4 x \right) \cos x dx \]
\[Let\ \sin x = t . Then, \cos dx = du\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \left( 1 - 2 t^2 + t^4 \right) dt\]
\[ \Rightarrow I = \left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right]_0^1 \]
\[ \Rightarrow I = 1 - \frac{2}{3} + \frac{1}{5}\]
\[ \Rightarrow I = \frac{8}{15}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(2a − x) = −f(x), prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`Γ(3/2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
The value of `int_2^3 x/(x^2 + 1)`dx is ______.