Advertisements
Advertisements
Question
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Solution
Let I =`int_0^(2x) cos ^5 x dx` ..... (1)
` cos^5( 2π - x )= cos^5 x `
It is known that,
`int_0^(2a) f (x) dx = 2 int _0^a f (x)dx, if f (2a - x ) = f(x)`
= 0 if f (2a - x = - f (x)
∴ `I = 2 int_0^π cos^5 x dx `
Now
\[f\left( \pi - x \right) = \cos^5 \left( \pi - x \right) = - \cos^5 x = - f\left( x \right)\]
⇒ I = 2(0 ) = 0 [ `cos^5(π - x) = - cos^5 x`]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.