English

Write the Distance of the Point (3, −5, 12) from X-axis? - Mathematics

Advertisements
Advertisements

Question

Write the distance of the point (3, −5, 12) from X-axis?

Sum

Solution

\[ \text { The distance of a general point } \left( x, y, z \right) \text{ from  x - axis is } \sqrt{y^2 + z^2} . \]

\[ \therefore \text{ Distance of the point } \left( 3, - 5, 12 \right) \text{ from x - axis }= \sqrt{\left( - 5 \right)^2 + {12}^2} \]

                                      \[ = \sqrt{169} \]

                                      \[ = 13 \text{ units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Very Short Answers [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 6 | Page 24

RELATED QUESTIONS

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


For every point P (xyz) on the x-axis (except the origin),


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


The angle between the two diagonals of a cube is


 

 


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×