Advertisements
Advertisements
Question
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Solution
The given direction ratios are a = 0, b = 0, c = 7
If a, b, c are the direction ratios of a vector then the direction cosines of the vector are
l = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
c = `"c"/sqrt("a"^2 + "b"^2 + "c"^2)`
∴ The required direction cosines of the water are
= `0/sqrt(0^2 + 0^2 + 7), 0/sqrt(0^2 + 0^2 + 7^2), 7/sqrt(0^2 + 0^2 + 7^2)`
= `0/7, 0/7, 7/7`
= (0, 0, 1)
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
What are the direction cosines of Y-axis?
What are the direction cosines of Z-axis?
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.