English

Find the Vector Equation of the Plane Passing Through (1, 2, 3) and Perpendicular to the Plane Vecr.(Hati + 2hatj -5hatk) + 9 = 0 - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`

Solution

The position vector of the point (1, 2, 3) is `vecr_1 = hati +2hatj + 3hatk`

The direction ratios of the normal to the plane, , `vecr.(hati+2hatj -5hatk)+9 = 0`are 1, 2, and −5 and the normal vector is `vecN = hati + 2hatj - 5hatk`

The equation of a line passing through a point and perpendicular to the given plane is given by, `vecl = vecr + lambdavecN` ,`lambda in R`

`=> hatl = (hati + 2hatj + 3hatk) + lambda(hati +  2hatj -5hatk)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.4 [Page 498]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.4 | Q 7 | Page 498

RELATED QUESTIONS

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Find the distance of the point (2, 3, 4) from the x-axis.


For every point P (xyz) on the xy-plane,

 


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×