English

Find the Angle Between the Lines Whose Direction Cosines Are Given by the Equations (I) L + M + N = 0 and L2 + M2 − N2 = 0 - Mathematics

Advertisements
Advertisements

Question

Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0

Sum

Solution

` \text{ Given } : `

\[l + m + n = 0 . . . (1) \]

\[ l^2 + m^2 - n^2 = 0 . . . (2)\]

\[\text{ From } \left( 1 \right), \text{ we get } \]

\[m = - l - n\]

\[\text { Substituting } m = - l - n \text{ in} \left( 2 \right), \text { we get } \]

\[ l^2 + \left( - l - n \right)^2 - n^2 \]

\[ \Rightarrow l^2 + l^2 + n^2 + 2\ln - n^2 = 0\]

\[ \Rightarrow 2 l^2 + 2\ln = 0\]

\[ \Rightarrow 2l \left( l + n \right) = 0\]

\[ \Rightarrow l = 0 , l = - n\]

\[\text{ If } l = 0, \text{ then by substituting } l = 0  \text { in } \left( 1 \right), \text { we get } m = - n . \] 

\[\text{ If } l = - n, \text { then by substituting } l = - n \text { in }\left( 1 \right), \text { we get } m = 0 . \]

\[\text{ Thus, the direction ratios of the two lines are proportional to } 0, - n, \text { and } - n, 0, n \text{ or } 0, - 1, 1 \text { and } - 1, 0, 1 . \]

\[\text{ Vectors parallel to these lines are } \]

\[ \vec{a} = 0 \hat{i} - \hat{j} + \hat{k} \]

\[ \vec{b} = - \hat{i} + 0 \hat{j} + \hat{k} \]

\[\text{ If } \theta \text{ is the angle between the lines, then } \theta \text{ is also the angle between } \vec{a} \text{ and } \vec{b} . \]

\[\text { Now }, \]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}\]

\[ = \frac{1}{\sqrt{0 + 1 + 1} \sqrt{1 + 0 + 1}} \]

\[ = \frac{1}{2} \]

\[ \Rightarrow \theta = \frac{\pi}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Exercise 27.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.1 | Page 23

RELATED QUESTIONS

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Find the distance of the point (2, 3, 4) from the x-axis.


For every point P (xyz) on the xy-plane,

 


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×