English

The Cartesian equation of a line AB is: 2x-12=y+22=z-33. Find the direction cosines of a line parallel to line AB. - Mathematics

Advertisements
Advertisements

Question

The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.

Sum

Solution

We have, `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`

The equation of line AB can be rewritten as `(x - 1/2)/6 = (y - (-2))/2 = (z - 3)/3`

Thus, direction ratios of the line parallel to AB are proportional to 6, 2, 3.

Hence, the direction cosines of the line parallel to AB are proportional to `6/sqrt(6^2 + 2^2 + 3^2), 2/sqrt(6^2 + 2^2 + 3^2), 3/sqrt(6^2 + 2^2 + 3^2)`

or `6/sqrt(49), 2/sqrt(49), 3/sqrt(49)`

or `6/7, 2/7, 3/7`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 3

RELATED QUESTIONS

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


What are the direction cosines of Z-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×