English

Find the Angle Between the Vectors Whose Direction Cosines Are Proportional to 2, 3, −6 and 3, −4, 5. - Mathematics

Advertisements
Advertisements

Question

Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.

Sum

Solution

\[\text{ Let } \vec{a} \text{ be a vector with direction ratios } 2, 3, - 6 . \]

\[ \Rightarrow \vec{a} = 2  \hat{i} + 3 \hat{j} - 6 \hat{k} .\]

\[\ \text { Let } \vec{b} \text { be a vector with direction ratios }  3, - 4, 5 . \]

\[ \Rightarrow \vec{b} = 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \]

\[\text{ Let } \theta \text{  be the angle between the given vectors }  . \]

\[\text{ Now, }\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} \]

\[ = \frac{\left( 2 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) . \left( 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \right)}{\left| 2 \hat{i} + 3 \hat{j} - 6 \hat{k} \right|\left| 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \right|}\]

\[ = \frac{6 - 12 - 30}{\sqrt{4 + 9 + 36} \sqrt{9 + 16 + 25}} \]

\[ = \frac{- 36}{\sqrt{49} \sqrt{50}} \]

\[ = \frac{- 36}{35\sqrt{2}}\]

\[\text{ Rationalising the result, we get }\]

\[\cos \theta = - \frac{18\sqrt{2}}{35} \]

\[ \therefore \theta = \cos^{- 1} \left( - \frac{18\sqrt{2}}{35} \right)\]

\[\ \text { Thus, the angle between the given vectors measures }\cos^{- 1} \left( - \frac{18\sqrt{2}}{35} \right) . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Exercise 27.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 7 | Page 23

RELATED QUESTIONS

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of Y-axis?


What are the direction cosines of Z-axis?


Write the distance of the point (3, −5, 12) from X-axis?


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write direction cosines of a line parallel to z-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


The distance of the point P (abc) from the x-axis is 


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×