English

If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line. - Mathematics

Advertisements
Advertisements

Question

If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.

Sum

Solution

The direction cosines are given by

l = `"a"/sqrt("a"^2 + "b"^2 + "c"^2)`

m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`

n = `"c"/sqrt("a"^2 + "b"^2 + "c"62)`

Here a, b, c are 1, 1, 2, respectively

Therefore, l = `1/sqrt(1^2 + 1^2 + 2^2)`

m = `1/sqrt(1^2 + 1^2 + 2^2)`

n = `"c"/sqrt(1^2 + 1^2 + 2^2)`

i.e., l = `1/sqrt(6)`

m = `1/sqrt(6)`

n = `2/sqrt(6)`

i.e. `+-(1/sqrt(6), 1/sqrt(6), 2/sqrt(6))` are D.C’s of the line.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Solved Examples [Page 224]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Solved Examples | Q 1 | Page 224

RELATED QUESTIONS

Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Find the distance of the point (2, 3, 4) from the x-axis.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


For every point P (xyz) on the xy-plane,

 


The distance of the point P (abc) from the x-axis is 


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×