Advertisements
Advertisements
Question
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Solution
The distance of a general point P (x, y, z) from XY−plane is z.
Thus, distance of (7, −2, 3) from XY−plane is 3.
Similarly, the distance of P (x, y, z) from YZ−plane is x.
Thus, distance of (7, −2, 3) from YZ− plane is 7.
The distance of P (x, y, z) from XZ−plane is y.
Thus, distance of (7, −2, 3) from XZ−plane is 2 .
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
Define direction cosines of a directed line.
What are the direction cosines of X-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
The distance of the point P (a, b, c) from the x-axis is
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.