Advertisements
Advertisements
Question
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
Solution
Given `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then
`(1/2)^2 + (1/sqrt(2))^2 + "a"^2` = 1
`1/4 + 1/2 + "a"^2` = 1
`(1 + 2)/4 + "a"^2` = 1
a2 = `1 - 3/4`
= `(4 - 3)/4`
= `1/4`
a = `+- 1/2`
If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1
APPEARS IN
RELATED QUESTIONS
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
What are the direction cosines of Y-axis?
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.