Advertisements
Advertisements
Question
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Solution
\[ \text{ It is given that the the line makes angles } \alpha, \beta, \gamma \text{ with the coordinate axis }. \]
\[ \therefore l = \cos \alpha, m = \cos \beta \text{ and } n = \cos \gamma\]
\[ \Rightarrow l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 . . . \left( 1 \right)\]
\[\text{ Now} , \]
\[\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \left( 2 \cos^2 \alpha - 1 \right) + \left( 2 \cos^2 \beta - 1 \right) + \left( 2 \cos^2 \gamma - 1 \right)\]
\[ = 2\left( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \right) - 3\]
\[ = 2\left( 1 \right) - 3 ............\left [ \text{ From }\left( 1\right) \right]\]
\[ = - 1\]
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
What are the direction cosines of Y-axis?
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the distance of the point P (x, y, z) from XOY plane.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
Write direction cosines of a line parallel to z-axis.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
For every point P (x, y, z) on the x-axis (except the origin),
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.