English

Show that the Line Joining the Origin to the Point (2, 1, 1) is Perpendicular to the Line Determined by the Points (3, 5, −1) and (4, 3, −1). - Mathematics

Advertisements
Advertisements

Question

Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).

Sum

Solution

\[\text{ We know that two lines with direction ratios }  a_1 , b_1 , c_1 \text { and } a_2 , b_2 , c_2 \text { are perpendicular if } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 . \]

 

\[\text { The direction ratios of the line joining the origin } \left( 0, 0, 0 \right) \text { to the point } \left( 2, 1, 1 \right) \text { are } \left( 2 - 0 \right), \left( 1 - 0 \right), \left( 1 - 0 \right) \text{ or } 2, 1, 1 . \]

\[ \Rightarrow a_1 = 2, b_1 = 1, c_1 = 1\]

\[\text { Similarly, the direction ratios of the line joining the points } \left( 3, 5, - 1 \right) \text { and }  \left( 4, 3, - 1 \right) \text { are } \left( 4 - 3 \right), \left( 3 - 5 \right), \left[ - 1 - \left( - 1 \right) \right] \text { or } 1, - 2, 0 . \]

\[ \Rightarrow a_2 = 1, b_2 = - 2, c_2 = 0\]

\[ \therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 2 - 2 + 0 = 0\]

`  \text{ Therefore, the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1) and (4, 3, -1).} `

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Exercise 27.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 12 | Page 23

RELATED QUESTIONS

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the direction cosines of a line which makes equal angles with the coordinate axes.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Write the distance of the point (3, −5, 12) from X-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Find the distance of the point (2, 3, 4) from the x-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


For every point P (xyz) on the x-axis (except the origin),


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×