English

If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines. - Mathematics

Advertisements
Advertisements

Question

If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.

Sum

Solution 1

A-line makes 90° and 135°, 45°with x, y and z axes, respectively.

Therefore, Direction cosines of the line are cos 90°, cos135°, and cos45°

⇒ Direction cosines of the line are 0, `-(1)/sqrt(2),(1)/sqrt(2)`

shaalaa.com

Solution 2

Let the direction cosines of the line be l, m and n.

a = 90°, b = 135°, c = 45°

Now,

l = cos a = cos 90° = 0

m = cos b = cos 135° = `-1/sqrt2`

n = cos c = cos 45° = `1/sqrt2`

direction cosines of a line = `0, -1/sqrt2, 1/sqrt2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.1 [Page 467]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.1 | Q 1 | Page 467

RELATED QUESTIONS

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


The distance of the point P (abc) from the x-axis is 


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×