Advertisements
Advertisements
Question
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
Solution
`vec"a", vec"b", vec"c" = (2hat"i" + 3hat"j" - 4hat"k") + (3hat"i" - 4hat"j" - 5hat"k") + (-3hat"i" + 2hat"j" + 3hat"k")`
`vec"a", vec"b", vec"c" = 2hat"i" + hat"j" - 6hat"k"`
`|vec"a", vec"b", vec"c"| = |2hat"i" + hat"j" - 6hat"k"|`
= `sqrt(2^2 + 1^2 + (-6)^2`
= `sqrt(4 + 1 + 36)`
= `sqrt(41)`
Direction cosnes of `2hat"i" + hat"j" - 6hat"k"` are
`[2/|2hat"i" + hat"j" - 6hat"k"|, 1/|2hat"i" + hat"j" - 6hat"k"|, (-6)/|2hat"i" + hat"j"- 6hat"k"|]`
`[2/sqrt(41), 1/sqrt(41), (6)/sqrt(41)]`
∴ he magnitde and direction cosines of the vector.
`vec"a" + vec"b" + vec"c"` are `sqrt(41), [2/sqrt(41), 1/sqrt(41), (6)/sqrt(41)]`
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the line
`(x+2)/2=(2y-5)/3; z=-1`
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.