English

Find the coordinates of the image of the point (1, 6, 3) with respect to the line λr→=(j^+2k^)+λ(i^+2j^+3k^); where ' λ ' is a scalar. Also, find the distance of the image from the y – axis. - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.

Sum

Solution

Let P(1, 6, 3) be the given point, and let 'L' be the foot of the perpendicular from 'P' to the given line AB (as shown in the figure below). The coordinates of a general point on the given line are given by


`(x - 0)/1 = (y - 1)/2 = (z - 2)/3` = λ; λ is a scalar, i.e., x = λ, y = 2λ + 1 and z = 3λ + 2

Let the coordinates of L be (λ, 2λ + 1, 3λ + 2).

So, direction ratios of PL are λ – 1, 2λ + 1 – 6 and 3λ + 2 – 3, i.e., λ – 1, 2λ – 5 and 3λ – 1.

Direction ratios of the given line are 1, 2 and 3, which is perpendicular to PL.

Therefore, (λ – 1)1 + (2λ – 5)2 + (3λ – 1)3 = 0

`\implies` 14λ – 14 = 0

`\implies` λ = 1

So, coordinates of L are (1, 3, 5).

Let Q(x1, y1, z1) be the image of P(1, 6, 3) in the given line.

Then, L is the mid-point of PQ.

Therefore, `((x_1 + 1))/2` = 1, `((y_1 + 6))/2` = 3 and `((z_1 + 3))/2` = 5

`\implies` x1 = 1, y1 = 0 and z1 = 7

Hence, the image of P(1, 6, 3) in the given line is (1, 0, 7).

Now, the distance of the point (1, 0, 7) from the y-axis is `sqrt(1^2 + 7^2) = sqrt(50)` units.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Board Sample Paper

RELATED QUESTIONS

If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


What are the direction cosines of Z-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×