Advertisements
Advertisements
Question
Solution
\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^{- 1} \left( \sin x \right)dx + \int_\frac{\pi}{2}^\pi \sin^{- 1} \left( \sin x \right)dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} xdx + \int_\frac{\pi}{2}^\pi \left( \pi - x \right)dx ..............\left[ \frac{\pi}{2} \leq x \leq \pi \Rightarrow - \pi \leq - x \leq - \frac{\pi}{2} \Rightarrow 0 \leq \pi - x \leq \frac{\pi}{2} \right]\]
\[ = \left.\frac{x^2}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left.\frac{\left( \pi - x \right)^2}{2 \times \left( - 1 \right)}\right|_\frac{\pi}{2}^\pi \]
\[ = \frac{1}{2}\left( \frac{\pi^2}{4} - \frac{\pi^2}{4} \right) - \frac{1}{2}\left( 0 - \frac{\pi^2}{4} \right)\]
\[= 0 + \frac{\pi^2}{8}\]
\[ = \frac{\pi^2}{8}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.