Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
\[Putting\ x = \tan \theta\]
\[ \Rightarrow dx = \sec^2 \theta d\theta\]
\[When\ x \to 0 ; \theta \to 0\]
\[and\ x \to \infty ; \theta \to \frac{\pi}{2}\]
\[\text{Now, integral becomes},\]
\[I = \int\limits_0^\frac{\pi}{2} \frac{\log \left( \tan \theta \right)}{1 + \tan^2 \theta} \sec^2 \theta d\theta\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta ...............\left( 1 \right)\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log\left[ \tan \left( \frac{\pi}{2} - \theta \right) \right] d\theta .................\left[ \because \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta ..................\left( 2 \right)\]
\[\text{Adding} \left( 1 \right)and \left( 2 \right), \text{we get}\]
\[2I = \int\limits_0^\frac{\pi}{2} \log \left( \tan \theta \right) d\theta + \int\limits_0^\frac{\pi}{2} \log \left( \cot \theta \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \right) + \log \left( \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left[ \log \left( \tan \theta \times \cot \theta \right) \right] d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( \log 1 \right) d\theta\]
\[ = \int\limits_0^\frac{\pi}{2} \left( 0 \right) d\theta\]
\[ \Rightarrow 2I = 0\]
\[ \Rightarrow I = 0\]
\[ \therefore \int\limits_0^\infty \frac{\log x}{1 + x^2} dx = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.