Advertisements
Advertisements
Question
Solution
\[\left| x \right| = \begin{cases} - x &,& - 1 < x < 0\\ x &,& 0 < x < 1\end{cases}\]
\[ \therefore x\left| x \right| = \begin{cases} - x^2 &,& - 1 < x < 0\\ x^2 &,& 0 < x < 1\end{cases}\]
\[Now\, \int_{- 1}^1 x\left| x \right| d x\]
\[ = \int_{- 1}^0 - x^2 dx + \int_0^1 x^2 dx\]
\[ = - \int_{- 1}^0 x^2 dx + \int_0^1 x^2 dx\]
\[ = - \left[ \frac{x^3}{3} \right]_{- 1}^0 + \left[ \frac{x^3}{3} \right]_0^1 \]
\[ = - \left( 0 + \frac{1}{3} \right) + \left( \frac{1}{3} - 0 \right)\]
\[ = 0 - \frac{1}{3} + \frac{1}{3} - 0\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Prove that:
Write the coefficient a, b, c of which the value of the integral
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.