Advertisements
Advertisements
Question
Solution
\[Let\, I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) d \theta\]
\[Here\, f\left( \theta \right) = \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)\]
\[Consider\, f\left( - \theta \right) = \log\left[ \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right] = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) = - f\left( \theta \right)\]
\[i . e . , f\left( \theta \right) \text{is odd function} . \]
\[\text{Therefore}, I = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`