English

Π / 2 ∫ − π / 2 Log ( a − Sin θ a + Sin θ ) D θ - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Solution

\[Let\, I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) d \theta\]

\[Here\, f\left( \theta \right) = \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)\]

\[Consider\, f\left( - \theta \right) = \log\left[ \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right] = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) = - f\left( \theta \right)\]

\[i . e . , f\left( \theta \right) \text{is odd function} . \]

\[\text{Therefore}, I = 0\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Very Short Answers [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Very Short Answers | Q 18 | Page 115

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×