Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \sin\ 2x\ \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x\]
\[Let\ \sin x = t . Then, \cos\ x\ dx\ = dt\]
\[When x = 0, t = 0\ and\ x\ = \frac{\pi}{2}, t = 1\]
\[ \therefore I = 2 \int_0^1 t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2}{2} \tan^{- 1} t \right]_0^1 - 2 \int_0^1 \frac{t}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2}{2} \tan^{- 1} t \right]_0^1 - \left[ \log \left( 1 + t^2 \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2\pi}{4} - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x