Advertisements
Advertisements
Question
If f(2a − x) = −f(x), prove that
Solution
Using additive property
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integral} \int_a^{2a} f\left( x \right) d x\]
\[\text{Let }x = 2a - t, \text{Then }dx = - dt\]
\[\text{When }x = a, t = a\text{ and }x = 2a, t = 0\]
Therefore,
\[ \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ................\left( \text{changing the variable} \right)\]
\[\text{We have }f\left( 2a - x \right) = - f\left( x \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x - \int_0^a f\left( x \right) d x = 0\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.