English

If F(2a − X) = −F(X), Prove that 2 a ∫ 0 F ( X ) D X = 0 . - Mathematics

Advertisements
Advertisements

Question

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]
Sum

Solution

\[Let\ I = \int_0^{2a} f\left( x \right) d x\]
Using additive property
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integral} \int_a^{2a} f\left( x \right) d x\]
\[\text{Let }x = 2a - t, \text{Then }dx = - dt\]
\[\text{When }x = a, t = a\text{ and }x = 2a, t = 0\]
Therefore,
\[ \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ................\left( \text{changing the variable} \right)\]
\[\text{We have }f\left( 2a - x \right) = - f\left( x \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x - \int_0^a f\left( x \right) d x = 0\]

 

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 96]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 44 | Page 96

RELATED QUESTIONS

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×