Advertisements
Advertisements
Question
Options
- \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
- \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
\[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]
Solution
\[\text{We have}, \]
\[I = \int_0^3 \frac{3x + 1}{x^2 + 9} d x\]
\[I = \int_0^3 \frac{3x}{x^2 + 9}dx + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ I_1 = \int_0^3 \frac{3x}{x^2 + 9}dx and I_2 = \int_0^3 \frac{1}{x^2 + 9}dx\]
\[\text{Putting} x^2 + 9 = t in I_1 \]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[When\ x \to 0; t \to 9\]
\[and\ x \to 3; t \to 18\]
\[ \therefore I = \int_9^{18} \frac{3 dt}{2 t} + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ = \frac{3}{2} \int_9^{18} \frac{dt}{t} + \int_0^3 \frac{1}{x^2 + 3^2}dx\]
\[ = \frac{3}{2} \left[ \log\left( t \right) \right]_9^{18} + \frac{1}{3} \left[ \tan^{- 1} \left( \frac{x}{3} \right) \right]_0^3 \]
\[ = \frac{3}{2}\left[ \log18 - \log9 \right] + \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{3}{2}\left[ \log\frac{18}{9} \right] + \frac{\pi}{12}\]
\[ = \frac{3}{2}\left[ \log 2 \right] + \frac{\pi}{12}\]
\[ = \log\left( \sqrt{8} \right) + \frac{\pi}{12}\]
\[ = \log\left( 2\sqrt{2} \right) + \frac{\pi}{12}\]
\[ = \frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Find: `int logx/(1 + log x)^2 dx`