English

3 ∫ 0 3 X + 1 X 2 + 9 D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

Options

  • \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]

MCQ

Solution

\[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

\[\text{We have}, \]
\[I = \int_0^3 \frac{3x + 1}{x^2 + 9} d x\]
\[I = \int_0^3 \frac{3x}{x^2 + 9}dx + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ I_1 = \int_0^3 \frac{3x}{x^2 + 9}dx and I_2 = \int_0^3 \frac{1}{x^2 + 9}dx\]
\[\text{Putting} x^2 + 9 = t in I_1 \]
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[When\ x \to 0; t \to 9\]
\[and\ x \to 3; t \to 18\]
\[ \therefore I = \int_9^{18} \frac{3 dt}{2 t} + \int_0^3 \frac{1}{x^2 + 9}dx\]
\[ = \frac{3}{2} \int_9^{18} \frac{dt}{t} + \int_0^3 \frac{1}{x^2 + 3^2}dx\]
\[ = \frac{3}{2} \left[ \log\left( t \right) \right]_9^{18} + \frac{1}{3} \left[ \tan^{- 1} \left( \frac{x}{3} \right) \right]_0^3 \]
\[ = \frac{3}{2}\left[ \log18 - \log9 \right] + \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{3}{2}\left[ \log\frac{18}{9} \right] + \frac{\pi}{12}\]
\[ = \frac{3}{2}\left[ \log 2 \right] + \frac{\pi}{12}\]
\[ = \log\left( \sqrt{8} \right) + \frac{\pi}{12}\]
\[ = \log\left( 2\sqrt{2} \right) + \frac{\pi}{12}\]
\[ = \frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 16 | Page 118

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×