Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Solution
\[Let I = \int_0^\pi \frac{x \tan x}{sec x + \tan x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) + \tan\left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan x}{\sec x + \tan x} d x ................(2)\]
Adding (1) and (2) we get
\[2I = \int_0^\pi \frac{\pi \tan x}{\sec x + \tan x} d x\]
\[ = \pi \int_0^\pi \frac{sinx}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \frac{1 + sin x - 1}{1 + sin x}dx\]
\[ = \pi \int_0^\pi \left[ 1 - \frac{1}{1 + sinx} \right]dx\]
\[ = \pi \left[ x \right]_0^\pi - \pi \int_0^\pi \frac{1}{1 + \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + 2\tan\frac{x}{2}}dx\]
\[ = \pi^2 - \pi \int_0^\pi \frac{\sec^2 \frac{x}{2}}{\left( 1 + \tan\frac{x}{2} \right)^2}dx\]
\[ = \pi^2 + \pi \left[ \frac{2}{1 + \tan\frac{x}{2}} \right]_0^\pi \]
\[ = \pi^2 + \pi\left( 0 - 2 \right)\]
\[ = \pi^2 - 2\pi\]
\[ = \pi\left( \pi - 2 \right)\]
\[\text{Hence }I = \frac{\pi}{2}\left( \pi - 2 \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`