English

Π / 4 ∫ 0 Sin 3 2 T Cos 2 T D T - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

Solution

\[Let\ I = \int_0^\frac{\pi}{4} \sin^3 2t\ \cos 2t\ d\ t . Then, \]
\[Let\ \sin 2t = u . Then, 2 \cos\ 2t\ dt = du\]
\[When\ t = 0, u = 0\ and\ t\ = \frac{\pi}{4}, u = 1\]
\[ \therefore I = \frac{1}{2} \int_0^1 u^3 du\]
\[ \Rightarrow I = \frac{1}{2} \left[ \frac{u^4}{4} \right]_0^1 \]
\[ \Rightarrow I = \frac{1}{2}\left( \frac{1}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{1}{8}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 41 | Page 39

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×