Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{6} \cos x \cos 2x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{6} \cos x \left( \cos^2 x - \sin^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{6} \left( 2 \cos^3 x - \cos x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{6} \left( 2 \cos x \left( 1 - \sin^2 x \right) - \cos x \right) dx\]
\[ \Rightarrow I = \left[ 2\left( \sin x - \frac{\sin^3 x}{3} \right) - \sin x \right]_0^\frac{\pi}{6} \]
\[ \Rightarrow I = \left[ 2\left( \frac{1}{2} - \frac{1}{24} \right) - \frac{1}{2} \right] - 0\]
\[ \Rightarrow I = \frac{5}{12}\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Solve each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x