English

The Value of π / 2 ∫ − π / 2 ( X 3 + X Cos X + Tan 5 X + 1 ) D X , Is,0,2,π,1 - Mathematics

Advertisements
Advertisements

Question

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 

Options

  •  0

  • 2

  • π

  • 1

MCQ

Solution

π

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( x^3 + x\cos x + \tan^5 x + 1 \right) d x\]

\[ = \left[ \frac{x^4}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left[ x \sin x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x dx + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x \left( se c^2 x - 1 \right)dx + \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \frac{\pi^4}{64} - \frac{\pi^4}{64} + \frac{\pi}{2} - \frac{\pi}{2} - \left[ - \cos x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x se c^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x dx + \frac{\pi}{2} + \frac{\pi}{2}\]

\[ = \pi + 0 + \left[ \frac{\tan^4 x}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tanx \sec^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tan x dx\]

\[ = \pi - \left[ \frac{\tan^2 x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left[ - \log\left( \cos x \right) \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \pi\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 42 | Page 120

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×