Advertisements
Advertisements
Question
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Options
0
2
π
1
Solution
π
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( x^3 + x\cos x + \tan^5 x + 1 \right) d x\]
\[ = \left[ \frac{x^4}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left[ x \sin x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x dx + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x \left( se c^2 x - 1 \right)dx + \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{\pi^4}{64} - \frac{\pi^4}{64} + \frac{\pi}{2} - \frac{\pi}{2} - \left[ - \cos x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x se c^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x dx + \frac{\pi}{2} + \frac{\pi}{2}\]
\[ = \pi + 0 + \left[ \frac{\tan^4 x}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tanx \sec^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tan x dx\]
\[ = \pi - \left[ \frac{\tan^2 x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left[ - \log\left( \cos x \right) \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \pi\]
APPEARS IN
RELATED QUESTIONS
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is