हिंदी

The Value of π / 2 ∫ − π / 2 ( X 3 + X Cos X + Tan 5 X + 1 ) D X , Is,0,2,π,1 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 

विकल्प

  •  0

  • 2

  • π

  • 1

MCQ

उत्तर

π

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( x^3 + x\cos x + \tan^5 x + 1 \right) d x\]

\[ = \left[ \frac{x^4}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \left[ x \sin x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x dx + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x \left( se c^2 x - 1 \right)dx + \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \frac{\pi^4}{64} - \frac{\pi^4}{64} + \frac{\pi}{2} - \frac{\pi}{2} - \left[ - \cos x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x se c^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \tan^3 x dx + \frac{\pi}{2} + \frac{\pi}{2}\]

\[ = \pi + 0 + \left[ \frac{\tan^4 x}{4} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tanx \sec^2 x dx - \int_{- \frac{\pi}{2}}^\frac{\pi}{2} tan x dx\]

\[ = \pi - \left[ \frac{\tan^2 x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left[ - \log\left( \cos x \right) \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]

\[ = \pi\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 42 | पृष्ठ १२०

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×