हिंदी

1 / √ 3 ∫ 0 Tan − 1 ( 3 X − X 3 1 − 3 X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

योग

उत्तर

\[\int_0^\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) d x\]

\[Let x = \tan\theta,\text{ then }dx = \sec^2 \theta d\theta\]

\[\text{When, }x \to 0 ; \theta \to 0\]

\[\text{And }x \to \frac{1}{\sqrt{3}} ; \theta \to \frac{\pi}{6}\]

Therefore the integral becomes

\[ \int_0^\frac{\pi}{6} \tan^{- 1} \left( \frac{3\tan\theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)se c^2 \theta d\theta\]

\[ = \int_0^\frac{\pi}{6} \tan^{- 1} \left( \tan3\theta \right)se c^2 \theta d\theta\]

\[ = 3 \int_0^\frac{\pi}{6} \theta se c^2 \theta d\theta\]

\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \int_0^\frac{\pi}{6} \tan\theta d\theta\]

\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{6} \]

\[\]

\[ = 3\left( \frac{\pi}{6} \times \frac{1}{\sqrt{3}} - 0 \right) + 3\left[ \log\frac{\sqrt{3}}{2} \right]\]

\[ = \frac{\pi}{2\sqrt{3}} + 3\log\frac{\sqrt{3}}{2}\]

\[ = \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\log\frac{4}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 8 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×