Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
उत्तर
\[\int_0^\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) d x\]
\[Let x = \tan\theta,\text{ then }dx = \sec^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{And }x \to \frac{1}{\sqrt{3}} ; \theta \to \frac{\pi}{6}\]
Therefore the integral becomes
\[ \int_0^\frac{\pi}{6} \tan^{- 1} \left( \frac{3\tan\theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \tan^{- 1} \left( \tan3\theta \right)se c^2 \theta d\theta\]
\[ = 3 \int_0^\frac{\pi}{6} \theta se c^2 \theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \int_0^\frac{\pi}{6} \tan\theta d\theta\]
\[ = 3 \left[ \theta \tan\theta \right]_0^\frac{\pi}{6} - 3 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{6} \]
\[\]
\[ = 3\left( \frac{\pi}{6} \times \frac{1}{\sqrt{3}} - 0 \right) + 3\left[ \log\frac{\sqrt{3}}{2} \right]\]
\[ = \frac{\pi}{2\sqrt{3}} + 3\log\frac{\sqrt{3}}{2}\]
\[ = \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\log\frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.