Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d\ x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} \times \frac{\sqrt{1 - x}}{\sqrt{1 - x}} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \int_0^1 \frac{- 2x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \left[ 2\sqrt{1 - x^2} \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{2} - 0 + 0 - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(2a − x) = −f(x), prove that
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`