Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
विकल्प
- \[2 \int\limits_0^a f\left( x \right) dx\]
0
\[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]
- \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
उत्तर
\[\text{According to the additivity property of integrals}, \]
\[ \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, where\ a < c < b\]
using this property
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^{2a} f(x)dx . . . . . . (1)\]
\[\text{Now, consider the integral}, \int_0^{2a} f(x)dx\]
\[\text{Let }x = 2a - t . Then, dx = d(2a - t) \Rightarrow dx = - dt\]
\[\text{Also, }x = a \Rightarrow t = a\ and\ x\ = 2a \Rightarrow t = 0\]
\[\text{Therefore, }\int_a^{2a} f(x)dx = - \int_a^0 f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - x)dx\]
\[\text{Substituting this in equation (1) we get}, \]
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a - x)dx\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Solve each of the following integral:
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.