हिंदी

2 a ∫ 0 F ( X ) D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to

विकल्प

  • \[2 \int\limits_0^a f\left( x \right) dx\]
  •  0

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
MCQ

उत्तर

\[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

\[\text{According to the additivity property of integrals}, \]
\[ \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx, where\ a < c < b\]
using this property
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^{2a} f(x)dx . . . . . . (1)\]
\[\text{Now, consider the integral}, \int_0^{2a} f(x)dx\]
\[\text{Let }x = 2a - t . Then, dx = d(2a - t) \Rightarrow dx = - dt\]
\[\text{Also, }x = a \Rightarrow t = a\ and\ x\ = 2a \Rightarrow t = 0\]
\[\text{Therefore, }\int_a^{2a} f(x)dx = - \int_a^0 f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - t)dt\]
\[ \Rightarrow \int_a^{2a} f(x)dx = \int_0^a f(2a - x)dx\]
\[\text{Substituting this in equation (1) we get}, \]
\[ \int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^a f(2a - x)dx\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 38 | पृष्ठ १२०

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

`int_0^(2a)f(x)dx`


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


Evaluate the following:

Γ(4)


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×