हिंदी

∞ ∫ 0 Log ( X + 1 X ) 1 1 + X 2 D X = (A) π Ln 2 (B) −π Ln 2 (C) 0 (D)− π 2 Ln 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

विकल्प

  • π ln 2

  • −π ln 2

  • 0

  • \[- \frac{\pi}{2}\ln 2\]

MCQ

उत्तर

π ln 2

\[\int_0^\infty \log \left( x + \frac{1}{x} \right) \frac{1}{1 + x^2}dx\]

Substitute x = tan θ

⇒ dx = sec2 θ dθ.

when,

= 0  ⇒ θ = 0

\[x = \infty \Rightarrow \theta = \frac{\pi}{2}\]

\[ \int_0^\frac{\pi}{2} \left( \tan \theta + \frac{1}{\tan \theta} \right)\frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \int_0^\frac{\pi}{2} \log \left( \frac{\tan^2 \theta + 1}{\tan\theta} \right) \frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)\frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta ................\left[ \because 1 + \tan^2 \theta = \sec^2 \theta \right]\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)d\theta\]

\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{1}{\sin \theta . \cos \theta} \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \left[ \log \sin \theta + \log \cos \theta \right]d\theta\]

\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \sin \theta d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

Let us consider, 

\[\int_0^\frac{\pi}{2} \log \sin \theta d\theta = I .................(1)\]

\[ \Rightarrow I = \int_0^\frac{\pi}{2} \log \left( \sin \left( \frac{\pi}{2} - \theta \right) \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \cos \theta d\theta ..................(2)\]

\[\text{Adding (1) and (2)}\]

\[2I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta + \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]

\[ = \int_0^\frac{\pi}{2} \log \left( \sin 2\theta \right)d\theta - \int_0^\frac{\pi}{2} \log 2d\theta\]

\[\text{Let us consider } 2\theta = t\]

\[2d\theta = dt\]

\[2I = \frac{1}{2} \int_0^\pi \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2\]

\[2I = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2 ................\left[ \because \sin \theta \text{ is positive in both } 1^{st} \text{ and }2^{nd} \text{ quadrants} \right]\]

\[2I = I - \frac{\pi}{2}\log 2\]

\[2I - I = - \frac{\pi}{2}\log 2\]

\[I = - \frac{\pi}{2}\log 2, where I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta\]

\[Now, \]

\[ - \int_0^\frac{\pi}{2} \log\left( \sin \theta \right)d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]

\[ - 2 \int_0^\frac{\pi}{2} \log \sin \theta d\theta = - 2 \times I\]

\[ = - 2 \times - \frac{\pi}{2}\log 2 .............\left[ \because \text{where} I = - \frac{\pi}{2}\log2 \right]\]

\[ = \pi \log 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 37 | पृष्ठ १२०

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×