Advertisements
Advertisements
प्रश्न
विकल्प
π ln 2
−π ln 2
0
\[- \frac{\pi}{2}\ln 2\]
उत्तर
π ln 2
\[\int_0^\infty \log \left( x + \frac{1}{x} \right) \frac{1}{1 + x^2}dx\]
Substitute x = tan θ
⇒ dx = sec2 θ dθ.
when,
x = 0 ⇒ θ = 0
\[x = \infty \Rightarrow \theta = \frac{\pi}{2}\]
\[ \int_0^\frac{\pi}{2} \left( \tan \theta + \frac{1}{\tan \theta} \right)\frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]
\[ \int_0^\frac{\pi}{2} \log \left( \frac{\tan^2 \theta + 1}{\tan\theta} \right) \frac{1}{1 + \tan^2 \theta} \times \sec^2 \theta d\theta\]
\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)\frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta ................\left[ \because 1 + \tan^2 \theta = \sec^2 \theta \right]\]
\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{\sec^2 \theta}{\tan \theta} \right)d\theta\]
\[ \Rightarrow \int_0^\frac{\pi}{2} \log \left( \frac{1}{\sin \theta . \cos \theta} \right)d\theta\]
\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]
\[ \Rightarrow - \int_0^\frac{\pi}{2} \left[ \log \sin \theta + \log \cos \theta \right]d\theta\]
\[ \Rightarrow - \int_0^\frac{\pi}{2} \log \sin \theta d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]
Let us consider,
\[\int_0^\frac{\pi}{2} \log \sin \theta d\theta = I .................(1)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \log \left( \sin \left( \frac{\pi}{2} - \theta \right) \right)d\theta\]
\[ = \int_0^\frac{\pi}{2} \log \cos \theta d\theta ..................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta + \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]
\[ = \int_0^\frac{\pi}{2} \log \left( \sin \theta . \cos \theta \right)d\theta\]
\[ = \int_0^\frac{\pi}{2} \log \left( \sin 2\theta \right)d\theta - \int_0^\frac{\pi}{2} \log 2d\theta\]
\[\text{Let us consider } 2\theta = t\]
\[2d\theta = dt\]
\[2I = \frac{1}{2} \int_0^\pi \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2\]
\[2I = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right)dt - \frac{\pi}{2}\log 2 ................\left[ \because \sin \theta \text{ is positive in both } 1^{st} \text{ and }2^{nd} \text{ quadrants} \right]\]
\[2I = I - \frac{\pi}{2}\log 2\]
\[2I - I = - \frac{\pi}{2}\log 2\]
\[I = - \frac{\pi}{2}\log 2, where I = \int_0^\frac{\pi}{2} \log \sin \theta d\theta\]
\[Now, \]
\[ - \int_0^\frac{\pi}{2} \log\left( \sin \theta \right)d\theta - \int_0^\frac{\pi}{2} \log \cos \theta d\theta\]
\[ - 2 \int_0^\frac{\pi}{2} \log \sin \theta d\theta = - 2 \times I\]
\[ = - 2 \times - \frac{\pi}{2}\log 2 .............\left[ \because \text{where} I = - \frac{\pi}{2}\log2 \right]\]
\[ = \pi \log 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`