Advertisements
Advertisements
प्रश्न
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
विकल्प
x
x2
`1/"x"`
None of the above options
उत्तर
`1/"x"`
Explanation:
Given, `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`
Taking L.H.S. = `int "e"^"x" (("x" - 1)/"x"^2) "dx"`
= `int "e"^"x" (1/"x" - 1/"x"^2) "dx"`
= `int "e"^"x". 1/"x" "dx" - int "e"^"x". 1/"x"^2 dx"`
Integrating the first integral by parts taking `1/"x"` as the first function,
= `1/"x". "e"^"x" + int 1/"x"^2. "e"^"x" "dx" - int "e"^"x". 1/"x"^2 "dx" + "c"`
= `1/"x". "e"^"x" + "c"`
On comparing with the R.H.S., we get
f(x) = `1/"x"`
APPEARS IN
संबंधित प्रश्न
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.