हिंदी

∫ 1 1 3 ( X − X 3 ) 1 3 X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
योग

उत्तर

\[\text{Let I }=\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[= \int_\frac{1}{3}^1 \frac{\left[ x^3 \left( \frac{x}{x^3} - 1 \right) \right]^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{x \left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{\left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^3}dx\]

Put

\[\left( \frac{1}{x^2} - 1 \right) = z\]

\[\therefore - \frac{2}{x^3}dx = dz\]
\[ \Rightarrow \frac{dx}{x^3} = - \frac{dz}{2}\]

When

\[x \to \frac{1}{3}, z \to 8\]

When

\[x \to 1, z \to 0\]

\[\therefore I = - \frac{1}{2} \int_8^0 z^\frac{1}{3} dz\]
\[ = \left.- \frac{1}{2} \times \frac{z^\frac{4}{3}}{\frac{4}{3}}\right|_8^0 \]
\[ = - \frac{3}{8}\left[ 0 - \left( 8 \right)^\frac{4}{3} \right]\]
\[ = - \frac{3}{8} \times \left( - 16 \right)\]
\[ = 6\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 59 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×