Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[= \int_\frac{1}{3}^1 \frac{\left[ x^3 \left( \frac{x}{x^3} - 1 \right) \right]^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{x \left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{\left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^3}dx\]
Put
\[\therefore - \frac{2}{x^3}dx = dz\]
\[ \Rightarrow \frac{dx}{x^3} = - \frac{dz}{2}\]
When
When
\[\therefore I = - \frac{1}{2} \int_8^0 z^\frac{1}{3} dz\]
\[ = \left.- \frac{1}{2} \times \frac{z^\frac{4}{3}}{\frac{4}{3}}\right|_8^0 \]
\[ = - \frac{3}{8}\left[ 0 - \left( 8 \right)^\frac{4}{3} \right]\]
\[ = - \frac{3}{8} \times \left( - 16 \right)\]
\[ = 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find: `int logx/(1 + log x)^2 dx`