Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^e \frac{\log x}{x} d x\]
\[Let\ \log x = u\]
\[ \Rightarrow \frac{1}{x} dx = du\]
\[ \therefore I = \int u\ d u\]
\[ \Rightarrow I = \left[ \frac{u^2}{2} \right]\]
\[ \Rightarrow I = \left[ \frac{(\log x )^2}{2} \right]_1^e \]
\[ \Rightarrow I = \frac{1}{2} - 0\]
\[ \Rightarrow I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.