LetI=∫1−x2x4+x2+1dx=−∫x2−1x4+x2+1dx=−∫1−1x2x2+1+1x2dx=−∫1−1x2x2+2+1x2−1dx=−∫1−1x2(x+1x)2−1dxLet,x+1x=t⇒(1−1x2)dx=dtThen integral becomesThen integral becomes,I=−∫1t2−1dt=−12log|t−1t+1|=12log|t+1t−1|=12log|x+1x+1x+1x−1|=12log|x2+x+1x2−x+1|i.e.,∫1−x2x4+x2+1dx=12log|x2+x+1x2−x+1|⇒∫011−x2x4+x2+1dx=[12log|x2+x+1x2−x+1|]01=12log3
∫π/4π/2cotx dx
The value of ∫02π1+sinx2dx is
xxdx∫011-x1+xdx
The value of the integral ∫−22|1−x2|dx is ________ .
The value of ∫−π/2π/2(x3+xcosx+tan5x+1)dx, is
Evaluate: ∫−π/2π/2cosx1+exdx .
∫01cos−1(1−x21+x2)dx
∫01tan−1(2x1−x2)dx
∫0π/3cosx3+4sinxdx
∫0π/4exsinxdx
∫01|2x−1|dx
∫0π/211+tan3xdx
∫13(2x2+5x)dx
∫02(x2+2)dx
Using second fundamental theorem, evaluate the following:
d∫0141-4 dx
Evaluate the following using properties of definite integral:
d∫-11log(2-x2+x) dx
Evaluate d∫1+x1-xdx, x ≠1
Verify the following:
dC∫x-12x+3dx=x-log|(2x+3)2|+C
The value of ∫23xx2+1dx is ______.