Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) d x\]
\[Here, f\left( x \right) = log\left( \frac{2 - \sin x}{2 + \sin x} \right)\]
\[f\left( - x \right) = log\left( \frac{2 - \sin\left( - x \right)}{2 + \sin\left( - x \right)} \right) = log\left( \frac{2 + \sin x}{2 - \sin x} \right) = - log\left( \frac{2 - \sin x}{2 + \sin x} \right) = - f\left( x \right)\]
\[\text{Hence} f\left( x \right) \text{is an odd function}\]
\[ \therefore I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x