Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
उत्तर
\[\int_0^1 \log\left( 1 + x \right) d x\]
\[ = \int_0^1 \log\left( 1 + x \right) \times 1 d x\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \frac{x}{1 + x}dx\]
\[ = \left[ \log\left( 1 + x \right) x \right]_0^1 - \int_0^1 \left( 1 - \frac{1}{1 + x} \right)dx\]
\[ = \left[ x\log\left( 1 + x \right) \right]_0^1 - \left[ x - \log\left( 1 + x \right) \right]_0^1 \]
\[ = \log2 - 1 + \log2\]
\[ = 2\log2 - 1\]
\[ = \log4 - \log e\]
\[ = \log\frac{4}{e}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.