हिंदी

∫ π 2 − π 2 ( 2 Sin | X | + Cos | X | ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
योग

उत्तर

Consider

\[f\left( x \right) = 2\sin\left| x \right| + \cos\left| x \right|\]

Now,

\[f\left( - x \right) = 2\sin\left| - x \right| + \cos\left| - x \right| = 2\sin\left| x \right| + \cos\left| x \right| = f\left( x \right)\]

\[\therefore \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
\[ = 2 \int_0^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^\frac{\pi}{2} \left( 2\sin x + \cos x \right)dx ......................\left[ \left| x \right| = \begin{cases}x, & \text{if }x \geq 0 \\ - x, & \text{if }x < 0\end{cases} \right]\]
\[ = 4 \int_0^\frac{\pi}{2} \sin x\ dx + 2 \int_0^\frac{\pi}{2} \cos x\ dx\]

\[= \left.4 \times \left( - \cos x \right)\right|_0^\frac{\pi}{2} + \left.2 \times \sin x\right|_0^\frac{\pi}{2} \]
\[ = - 4\left( \cos\frac{\pi}{2} - \cos0 \right) + 2\left( \sin\frac{\pi}{2} - \sin0 \right)\]
\[ = - 4\left( 0 - 1 \right) + 2\left( 1 - 0 \right)\]
\[ = 4 + 2\]
\[ = 6\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 24 | पृष्ठ ५६

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×