Advertisements
Advertisements
प्रश्न
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
उत्तर
\[Let, I = \int_0^4 x\sqrt{4 - x} d x\]
\[ = \int_0^4 \left( 4 - x \right)\sqrt{4 - 4 + x} d x\]
\[ = \int_0^4 \left( 4 - x \right)\sqrt{x} d x\]
\[ = \int_0^4 4\sqrt{x} - x^\frac{3}{2} dx\]
\[ = \left[ 8\frac{x^\frac{3}{2}}{3} \right]_0^4 - \left[ \frac{2 x^\frac{5}{2}}{5} \right]_0^4 \]
\[ = \frac{64}{3} - \frac{64}{5}\]
\[ = \frac{128}{15}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f is an integrable function, show that
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.